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An exact solution is obtained for the problem considered here of the dis- 

charge of a jet from a straight slot using the hypersonic approximation. 
It is shown that for any relationship of Mach numbers in the undisturbed 

jet and on its boundary, shock-waves form before its first compression. 

The solution is obtained for an infinite sequence of discrete values of x. 

1. Non-steady one-dimensional motion of a gas and plane irrotational 

hypersonic flow are defined by the same equation 

a=x 4 a=x 3--x1 ax 
a72 --(X&jT+~+&=O (1) 

where the variables have for one-dimensional non- 

steady motion the following meaning: z is the sound 
velocity and 8 is the particle velocity. Fqr Plane 
hypersonic flow I = l/M = a/r, where (I is the sound 
velocity, r is the modulus of the particle velocity 
and 8 is the angle between the velocity vector and 
the x-axis. 

The variables of the flow-plane t, y or I, y are 
determined by the formulas 

x--lax ax -- x (or t) = 2z az B Y=W-& (2) 

These results are based on the well-known hyper- 
sonic analogy. 

For one-dimehsional isentropic gas motion Form- 
ulas (1) and (2) are exact [ 1 1; for plane steady hypersonic flow they 
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are obtained if the quantities h2z2 and z2 are assumed [ 2 1 to be small 
compared to unity, where h2 =(K + l)/(~ - 1). 

For values K = (2n + 3)/(2n + 1) where n is an integer. the general 
solution of Equation (1) is 

(3) 

2. The solution which describes a simple wave 

Y = (e * 4 % + f ((3) (4) 

is not contained in the general solution (3) and is a singular integral 
of Equation (1). As a result, a flow of the form (3) may follow a region 
of steady flow only by going through the intermediate stage of a simple 
wave. On the boundary of a simple wave-characteristic, the function x 

(z, 0) takes the value [ 1 1 

x=- f(e)al s (5) 

3. We shall consider the problem of the discharge of a plane hyper- 

sonic jet from a straight slot into a medium at rest. which corresponds 

to the problem of the motion of a piston in a closed pipe when the 

pressure on the piston is constant. The determining parameters of the 

problem are: the value z,,’ in the outflowing jet, the value “I’ at the 
free boundary of the jet, which depends on the parameters of the medium, 

and the half-width 1 of the jet. 

The dimensionless coordinates in the Plane of the flow x = z,,‘~‘/l. 

Y = Y’/l depend on one parameter: q = ~I’/z,,’ and the dimensionless vari- 

ables I = r’/z,, ‘and 8 = ti’/ze’, 

It is sufficient to investigate only half the jet by considering its 

plane of symmetry to be a solid wall. 

At the exit the boundary of the jet will first be linear and emanate 
from the point 0 (see figure) with an angle 8 = 2(~ - l)/(~ - 1); from 0 

also emanates a centered rarefaction wave*. In the plane xy in region 1 
there will be a uniform flow z = 1, 8 = 0, and in region 2 there will be 

a rarefaction wave Y = (8 + Z)X; in region 2’ there will be a uniform flow 

2 = q, e= 2(rl - l)/(~ - 1). In region 3 the expansion wave interacts 
with the wave reflected from the wall: in this region we have [3 1 

l The case of the outflow of a jet into a medium at high pressure is 
considered at the end of the article. 
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xs (2, Q)= 
(4n2 - 1) (n - l)! 

Zn! (6) 

Ol- 

‘ps (u) = 0, 
@ (u) = (479 - 1) (n - l)! 

2n! (23 - l)n = a (23 - l)n 

Region 3’ is a constant flow with parameters z = 27 - 1. 8 = 9, region 

3” is the rarefaction wave y = (0 - z)x + F3'X8); here F3’{8) is the 

value of x3 on the characteristic DB, i.e. for z = 21 - 1 - 1/2(K - 118. 

1. The flow in region 4 is determined by the boundary conditions at 

the characteristic AIDl and at the free boundary of the jet. Regions 3 

and 4 have common boundaries along the characteristics DB and AIDI, 

respectively, with one and the same simple wave. Therefore, as a result 

of (5) we have 

x-l 
X4=X3 for z=2q--l- 28 

The condition at the free boundary will be obtained from the fact that 
the jet boundary is a stream line and on this line (in the hypersonic 
approximation) 

dy/dz=0 for z=q 

Since here d/a6 = d/d8 we obtain, using (2) 

dx 
a=0 for z=q 

which is possible only if 

a‘% *?!I%%-0 
am- 22 az for z=q 

If the derivative dx/d8 becomes infinite this would mean that the jet 
boundary in the region of its interaction with the simple expansion wave 
is linear. 

As a consequence of Equation (1) condition (8) may be represented also 
in the form 

[ 
a2x 1 ax PX 
as-- -_ 1 az z=q= 0 or - 

z [ I -0 
(zaz)2 .z= q-- 

(9) 

5. Condition (7) defines the function I)~(II) in the form 



1380 V. A. Smirnov 

where @ is a polynomial in u with proportional coefficients 

31, . . . , 3,-G ‘Pa (2q - 1) 9 &2q-l),... P ,p (2q - 1) 

1); u) (10) 

(11) 

The constants bl, . . . , bn_ 1 are determined by the fact that the func- 
tion ~(2, 8) is represented as the (II - 1)th derivative of 4 or $. In the 

expression for the function ~(2, 8) these constants will disappear and. 
consequently. we may assume 

31=... 3,-l = 0. (12) 

Condition (9) yields a linear inhomogenous equation of order (n - 1) 

with constant coefficients for the function $4(~). In the solution for 

+d(u) there will be (n - 1) arbitrary constants, which are defined by 

&(2rl- 1). 4,‘(217- 1). . ..t 4: -92q- l), and by the condition of co- 
incidence of the coordinates of the connecting point of the free jet 
boundary in regions 4 and 2 (one condition). This condition in general 

will be 

?.tzm @2m-2 -=- 
89 ae (13) 

for z and 8 which correspond to the connecting point (here 2s is the 
number of the region). There are no conditions to determine the magni- 

tudes of $,(27- 1). $d’(27- l), . . . . 4:“-‘)(2~- 1). and therefore it 
may be shown by direct substitution that they are unnecessary, since 
they all will disappear in the expression for the function x( Z, 8). In 
this manner we may assume 

(P4 (21- 1) = ‘PI’ (2Tj - 1) = . . . = i$--1) (29 - 1) = 0 (14) 

From the definition of the function @ and the relationships (12) and 
(14) it follows that @E 0 and 

94 (u) = $3 (u) = a (u3 - 1y (15) 

According to (3) the condition (9) will be written in the form 

[($J” {;T4(z++e)+ 

+ +a (z-%+ e)}]*=, =o (16) 
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It is easily seen that the particular solution of this equation will 

be 

% (u) = - 4s (u) (171 

Indeed, according to (15). the expression 

1 - 
z [ ( -93 z++3)+1v3(z-+q 

will be a polynomial in z2 of order (n - 1). The general solution of (16) 

will be 

~P(u)=-*(a)+alexp +...+a,+leXp r?u’) (13) 

where aI, . . . . a,+I are the roots of the characteristic equation cor- 

responding to (16): 

,$+1_ (n + l)(n + 2) $2 + 

2 
(n -I- 2)(n + 1) n + (n + 1) n (n- 1) +... f3.2.i Cln_1 + 

2 
..t 

. . . +(_~h)“+‘E?#& (1% 

The constants al, . . . , a,+ 1 are determined from conditions (13) and 

(14). 

6. In region 5 the condition on the characteristic having a common 
boundary with 4, 

x5 = X4 for z = 27 - 1 + q fj 

results in the equations 

% (u) = ‘p4 (u) G9) 
$6 m - 1) = $4 Pl - 1) = $3 (2q - 1) 

95’ (2q - 1) = $3’ (2q - 1) (21) 
. . . . . . . . . . . . . . 

q&-1) (2q - 1) = *,,@--1) (2q - 1) 

. . . 

The condition a x s/a 8 = - 1 for 8 = 0 in the plane of symmetry of the 

flow, together with (21), determines I&U) in the form 

$5 @I = (P5 (u) + $3 @I = % @I + $3 (u) (22) 

In the subsequent regions the determination of the functions 4 and t+!r 
is similar to the one already investigated for the regions 4 and 5; they 
are all expressible through the two functions found above, namely &(u) 
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and qb,(ul. Below are given the expressions for the functions $ and $ for 

the various flow regions. 

Region 3 4 5 6 Y s etc. 

(P4 + 93 (P4 + $3 (p4 + 293 etc. 
(F4 + $3 qh + 293 ‘Fa + w3 etc. 

7. In regions 4 to 6 the flow has the character of compression waves 
and, consequently, it is possible that the characteristics of one family 

may cross, thereby vitiating the isentropic property of the flow and 
causing the formation of shock-waves. 

If the characteristics do not intersect in this flow, the coordinate 
x of the jet boundary in region 6 must be a monotonic function of 8 or 
of the characteristic parameter h = rl + (K - 1)/28 in the interval 

21--11 l-7 
x--l >fJ>--a-----, 

x-l 
or 2q-l-<A.G, 

If the characteristics do intersect, then in this region of parameter 

variation the function X(A) must have an extremum. Using the expressions 
given above for the functions 4 and $ in region 6, we obtain, according 
to (3) and (2) 

k=l 

where bk does not depend on h . Hence 

dx -- 
dh - 1 

1 

It is easily seen that the root of this function is the value x = r,r, 
located in the indicated interval of the variation of A. This means that 
for any configuration of Mach numbers in the discharging stream and on 

its boundary with the medium (i.e. for any value of 7) and for any K the 

characteristics intersect in region 6 or earlier. 

In such a manner the isentropic flow in a hypersonic stream never 
extends further than the first compression of the stream. Calculation 
shows that for 0 < q < 0.5 a shock-wave is formed as a result of the in- 
tersection of the characteristics in regions 3 and 4, for 0.5 < 11 < 0.88 
in regions 4 and 4”. for 0.88 < 7 < 1 in regions, 5, 5”and 6. 
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The possibility of formation of shock-waves in the supersonic jet was 

explained by Pack [ 4 ] by numerical calculation using the method of 

finite differences for two examples of flow. The given solution is 
applicable directly in the case of discharge of a jet from a straight 
slot into a medium of high pressure. In this case, upon discharge into 
the medium, a shock-wave is formed, the front of which is linear. The 
free boundary is also linear. From the meeting point of the shock-wave, 

reflected from the plane of symmetry, with the free boundary emanates a 

central rarefaction wave and the flow considered above begins. 
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